

Hardware Reference Manual

REV. August 2023

SandCat

(VL-EPM-39)

Intel® Atom™-based Single Board Computer with Ethernet, Video, USB, SATA, Serial I/O, Digital I/O, Counter/Timers, Mini PCle, mSATA and PCI/104-Plus Interface.

WWW.VERSALOGIC.COM

10230 Spokane Ct. Tualatin, OR 97062-7341 (503) 747-2261 Fax (971) 224-4708

Copyright © 2018-2023 VersaLogic Corp. All rights reserved.

Notice:

Although every effort has been made to ensure this document is error-free, VersaLogic makes no representations or warranties with respect to this product and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

VersaLogic reserves the right to revise this product and associated documentation at any time without obligation to notify anyone of such changes.

PC/104 and the PC/104 logo are trademarks of the PC/104 Consortium.

* Other names and brands may be claimed as the property of others.

Product Release Notes

Release 1.0	October 2018	Initial Release	
Release 1.1 April 2019 Added I ² C pinouts to table 7		Added I ² C pinouts to table 7	
Release 1.2 May 2020 Removed link to OS compatibility chart on page 12		Removed link to OS compatibility chart on page 12	
Release 1.3 November 2020 Updated power setup (page 8) Updated CBR-4005 image (figure 2		Updated power setup (page 8) Updated CBR-4005 image (figure 21)	
Release 1.4	August 2023	Corrected part number for CBR-4005 board and cable to prevent confusion	

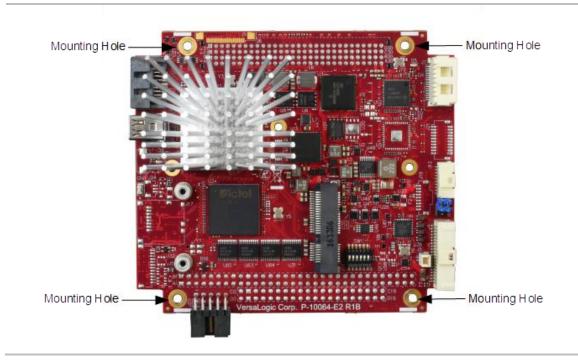
Cautions

ELECTROSTATIC DISCHARGE

Electrostatic discharge (ESD) can damage boards, disk drives and other components. The circuit board must only be handled at an ESD workstation. If an approved station is not available, some measure of protection can be provided by wearing a grounded antistatic wrist strap. Keep all plastic away from the board, and do not slide the board over any surface.

After removing the board from its protective wrapper, place the board on a grounded, static-free surface, component side up. Use an antistatic foam pad if available.

The board should also be protected inside a closed metallic anti-static envelope during shipment or storage.


MOUNTING SUPPORT

The single board computer must be supported at all four mounting points to prevent excessive flexing when expansion modules are attached and removed. Flex damage caused by excessive force on an improperly mounted circuit board is not covered under the product warranty.

EARTH GROUND REQUIREMENT

All mounting standoffs should be connected to earth ground (chassis ground). This provides proper grounding for EMI purposes. The figure below shows the location of the board's mounting holes. All mounting holes identified in the figure must be connected to earth ground.

Figure 1. Attaching the EPM-39 to Earth Ground

Contents

Introduction	1
Description	1
Technical Specifications	3
Thermal Considerations	3
EPM-39 Block Diagram	4
Dimensions and Mounting	5
Hardware Assembly	6
Related Documents	6
Configuration and Setup	7
Initial Configuration	
Basic Setup	7
Jumper Blocks	9
Jumpers Blocks in the As-Shipped Configuration	9
Jumper Summary	9
Configuration Switches	10
Resetting the BIOS to Factory Defaults	
Clearing Non-volatile RAM and RTC Registers	11
BIOS Setup Utility	
Operating System Installation	12
Board Features	13
CPU	
System RAM	13
I/O Interfaces	13
Power Delivery	14
Main Power Connector	14
Cabling	
Power Delivery Considerations	
Power Button	16
Supported Power States	
Battery Power Options	
Cabling	
VL-CBR-0203 External Battery Module	
Real Time Clock (RTC)	
Push-Button Reset	
LEDs/Indicators	
Programmable LED	
Power LEDs	
External Speaker	20
Mass Storage Interfaces	
SATA	21
Multi-purpose I/O	22
USB Interfaces	22

PCIe Mini Card / mSATA	22
mSATA Activity LED	24
PCIe Mini Card LEDs	
User I/O Connector	27
Cabling	
Serial Ports	
Serial Port Connectors	
Serial Port Connector Pinouts	
CablingRS-485 Mode Line Driver Control	
Video Interfaces	
Mini DisplayPort Connector	
Console Redirection	33
Network Interfaces	34
Ethernet Connector	
Cabling	35
On-Board Ethernet Status LEDs	
Expansion Interfaces	37
PC/104-Plus Expansion Bus	
ISA Bus (on PC/104- <i>Plus</i> and PC/104 Expansion Modules)	
ISA I/O Support	
ISA Memory Support	
ISA IRQ Support	
Each of the IRQs must be enabled in the BIOS Setup utility before the	
used. (All are disabled by default.)	
PCI Bus (on PC/104- <i>Plus</i> and PCI-104 Expansion Modules)	
•	
System Resources and Maps	40
CBR-4005 Paddleboard	41
CBR-4005 Paddleboard	41
CBR-4005 Connectors and Indicators	41
User I/O Connector	42
Cabling	43
On-board Battery	
Auxiliary I/O Connector	
Dimensions and Mounting Holes	
Thermal Considerations	46
The Thermal Solution for Your Application	
Heat Sink	
General System-level Considerations	
CPU Thermal Trip Points	
Thermal Specifications, Restrictions, and Conditions	
Overall Restrictions and Conditions	
Heat Sink Considerations:	
EPM-39 Thermal Characterization	
Test Results	50 51

Figures

Figure 1. Attaching the EPM-39 to Earth Ground	iv
Figure 2. VL-EPM-39 Single Board Computer (Top Side)	
Figure 3. VL-EPM-39 Single Board Computer (Bottom Side)	3
Figure 4. EPM-39 Dimensions and Mounting Holes	5
Figure 5. Jumper Block Locations	
Figure 6. Location of SW1 Configuration Switch Block	10
Figure 7. Location and Pin Orientation of the Main Power Connector	14
Figure 8. Location and Pin Orientation of the External Battery Connector	17
Figure 9. VL-CBR-0203 Latching Battery Module	18
Figure 10. Locations of the LEDs/Indicators	
Figure 11. Location of the D11 Dual-color LED	
Figure 12. Location of the SATA Port	
Figure 13. Location of the User I/O to VL-CBR-4005	22
Figure 14. Location of the SATA/mSATA Activity LED	
Figure 15. Location of PCIe Mini Card LEDs	
Figure 16. Location and Pin Orientation of User I/O Connector	27
Figure 17. Location and Pin Orientation of Serial Port Connector	29
Figure 18. Location of the Mini DisplayPort Connector	32
Figure 19. Location and Pin Orientation for the J7 Ethernet Connector	34
Figure 20. Location of Ethernet Status LED	35
Figure 21. CBR-4005 Connectors, Switches, and LEDs	
Figure 22. Location and Pin Orientation of the User I/O Connector	42
Figure 23. Location and Pin Orientation of Auxiliary I/O Connector	44
Figure 24. CBR-4005 Dimensions and Mounting Holes	
Figure 25. EPM-39EBK CPU Frequency Relative to Ambient Temperature	51
<u> </u>	
Ta	ables
Table 1: Jumper Summary	9
Table 2: Switch Setting Summary	10
Table 3: J20 Main Power Connector Pinout	15
Table 4: Supported Power States	16
Table 5: PCIe Mini Card / mSATA Pinout	23
Table 6: PCIe Mini Card LED States	26
Table 7: J4 I/O Connector Pinout and Pin Orientation	28
Table 8: J13 COM1/COM2 Connector Pinout	30
Table 9: J3 Mini DisplayPort Connector Pinout	32
Table 10: Ethernet Connector Pinout	35
Table 11: Ethernet Status LEDs	36
Table 12: PCI/104-Plus Connector (PCI) Maximum Current	
Table 13: Available ISA Bus I/O Ranges	38

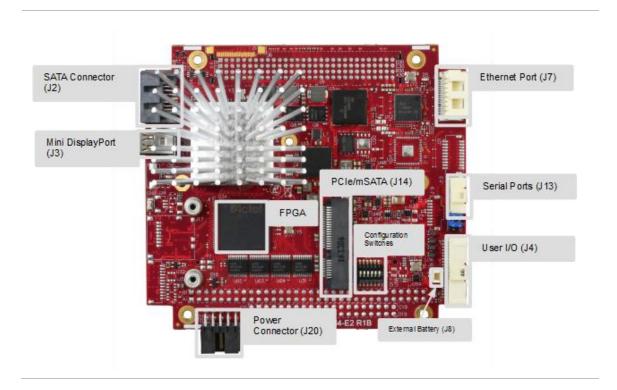
Table 14: User I/O Connector Pinout	42
Table 15: Auxiliary I/O Connector Pinout	44
Table 16: CPU Thermal Trip Points	48
Table 17: Temperature Monitoring Programs	
Table 18: EPM-39 Thermal Testing Setup	

Introduction

Description

The EPM-39 is a low-power / high-performance single board computer (SBC) with a traditional PC/104-Plus expansion interface. This combination makes it easy to upgrade existing systems to a powerful 4th generation Atom processor, while preserving plug-in expansion to existing specialty I/O boards. In addition, it also contains a variety of on-board I/O interfaces, including USB, a mini PCIe expansion socket, and digital I/O ports.

- Intel Atom "Bay Trail" dual-core processor, with processor clock rates up to 1.33 GHz (Atom E3825)
- Integrated Intel Gen 7 graphics core supports DirectX 11, OpenGL 4, and H.264, MPEG-2 encoding/decoding. Mini DisplayPort video output.
- Up to Eight GB DDR3L memory, one SO-DIMM socket
- Ethernet, auto-detect 10Base-T / 100Base-TX / 1000Base-T
- Four USB 2.0 ports support keyboard, mouse, and other devices.


- Two RS-232/422/485 serial ports
- Three 8254 timer/counters
- Eight digital I/O lines
- SATA port, 3 Gb/s
- Mini PCIe socket, supports Wi-Fi modems, GPS receivers, flash storage, and other modules
- PC/104 form factor with PC/104-Plus expansion
- Customization available

The EPM-39 is compatible with popular operating systems such as Microsoft Windows*, Windows Embedded, Linux, VxWorks*, and QNX*.

EPM-39 boards are subjected to complete functional testing and are backed by a limited five-year warranty. Careful parts sourcing and US-based technical support ensure the highest possible quality, reliability, service, and product longevity for this exceptional single-board computer (SBC).

The next figure shows the connectors and major components on the top side of the board. Figure 3 shows the connectors and major components on the bottom side of the board.

Figure 2. VL-EPM-39 Single Board Computer (Top Side)

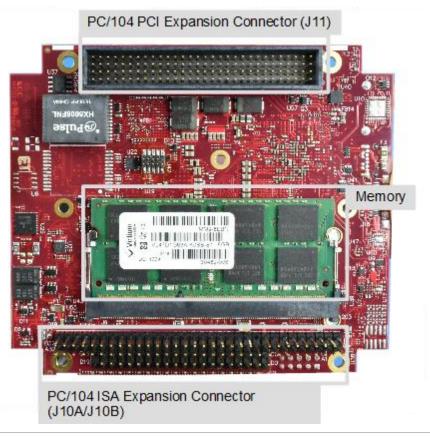
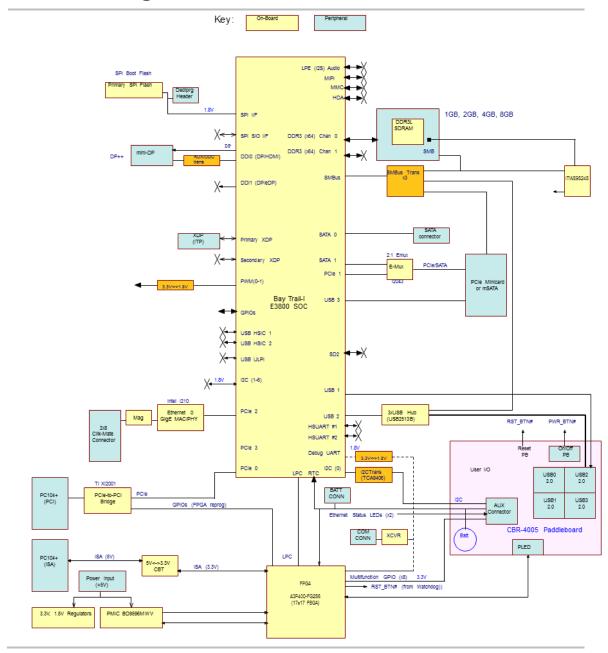


Figure 3. VL-EPM-39 Single Board Computer (Bottom Side)

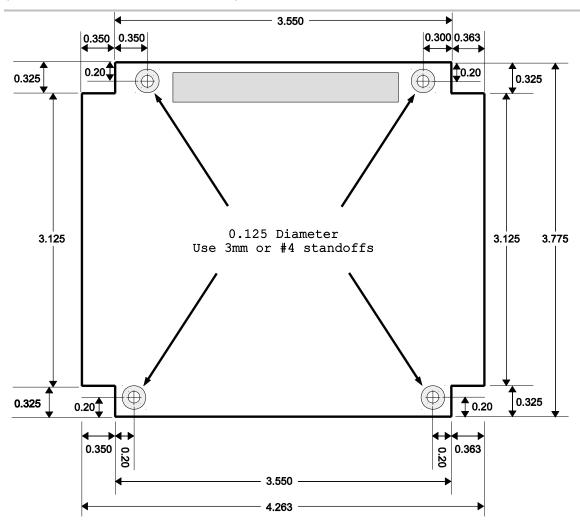

Technical Specifications

See the EPM-39 Data Sheet for complete specifications.

Thermal Considerations

The operating temperature for the EPM-39 is -40 $^{\circ}$ C to +85 $^{\circ}$ C, de-rated -1.1 $^{\circ}$ C per 305m (1,000 ft.) above 2,300m (7,500 ft.). All SandCat models include an aluminum alloy heatsink. Refer to the Thermal Characterization section for information on additional thermal solutions.

EPM-39 Block Diagram



Dimensions and Mounting

The EPM-39 complies with the PC/104 standard which provides for specific mounting hole and PC/104-*Plus* stack locations as shown below.

Figure 4. EPM-39 Dimensions and Mounting Holes

(Not to scale. All dimensions in inches.)

CAUTION:

The EPM-39 must be supported at all four mounting points to prevent excessive flexing when expansion modules are attached and removed. Flex damage caused by excessive force on an improperly mounted circuit board is not covered under the product warranty.

HARDWARE ASSEMBLY

The EPM-39 mounts on four hardware standoffs using the corner mounting holes. These standoffs are secured to the underside of the circuit board using pan head screws.

The entire assembly can sit on a table top or be secured to a base plate. When bolting the unit down, make sure to secure all standoffs to the mounting surface to prevent circuit board flexing.

An extractor tool is available (part number VL-HDW-203) to separate the PC/104 modules from the stack.

Related Documents

The following documents available are on the EPM-39 Product Page:

- EPM-39 Programmer's Reference Manual provides information on the board's resources (memory, I/O, and IRQs), a description of the FPGA's registers, and programming information for the board's hardware interfaces.
- *EPM-39 BIOS Reference Manual* provides information on accessing and configuring settings in the BIOS Setup utility. All BIOS menus, submenus, and configuration options are described.
- VersaAPI Installation and Reference Guide describes the shared library of API calls for reading and controlling on-board devices on certain VersaLogic products.

Additional documents:

Processor	
Intel Atom E38xx (formerly "Bay Trail") System-on-Chip (SoC) Processor	Intel Atom Processor E3800 Product Family Datasheet
Ethernet Controller	
Intel I210-IT Gigabit Ethernet Controller	Intel I210-IT Datasheet
PC/104 Specification	http://www.versalogic.com/products/PC104/index.asp
PC/104-Plus Specification	http://www.versalogic.com/products/PC104/index.asp

Initial Configuration

The following components are recommended for a typical development system.

- VL-EPM-39 single board computer
- VL-MM9-xxEBN DDR3 SO-DIMM module
- ATX power supply with motherboard and disk drive connectors
- VGA video monitor
- USB Keyboard
- USB Mouse
- SATA hard drive

The following VersaLogic cables and accessories are recommended.

- Mini DisplayPort to VGA cable (CBR-2032)
- User I/O cable (CBR-4005) and accompanying paddleboard Power adapter cable (CBR-1008)
- VL-CBR-0702 SATA data cable
- VL-CBR-0401 ATX to SATA power adapter
- VL-CBR-1605 12-inch single Ethernet adapter

You will also need a Windows (or other OS) installation CD/DVD and corresponding drive.

Basic Setup

The following steps outline the procedure for setting up a typical development system. The EPM-39 should be handled at an ESD workstation or while wearing a grounded antistatic wrist strap.

Before you begin, unpack the EPM-39 and accessories. Verify that you received all the items you ordered. Inspect the system visually for any damage that may have occurred in shipping. Contact Support@VersaLogic.com immediately if any items are damaged or missing.

Gather all the peripheral devices you plan to attach to the EPM-39 as well as their interface and power cables.

It is recommended that you attach standoffs to the board to stabilize the board and make it easier to work with.

7

1. Install Memory

 Insert the DDR3L DRAM module into the SO-DIMM socket on the bottom side of the board and latch it into place.

2. Attach Cables and Peripherals

Note:

The instructions below refer to connector locations by the reference designators printed on the board's silkscreen. Figure 2 and Figure 3 show the locations of all the connectors along with their reference designators.

- Plug the Mini DisplayPort to VGA cable VL-CBR-2032 into socket J3 Attach the cable to a VGA display. (Alternatively, you can attach a DisplayPort-enabled display to the Mini DisplayPort connectors at J3. The VL-EPH-V6 video adapter card converts DisplayPort output to LVDS.)
- Plug the VL-CBR-4005 paddleboard into socket J4.
- Plug a USB CD-ROM drive, USB keyboard, and USB mouse into any of the USB connectors of the CBR-4005 paddleboard.
- Plug the SATA data cable VL-CBR-0702 into socket J2. Attach a hard drive to the connector on the cable.
- Attach the SATA power adapter cable VL-CBR-0401 to the ATX power supply and SATA drive.
- Optionally, attach a LAN cable to the Ethernet connector at J7 on the EPM-39 using the VL-CBR-1605 RJ-45 adapter.

3. Attach Power

 Plug the power adapter cable VL-CBR-1008 into socket J20. Attach the motherboard connector of the ATX power supply to the adapter. VL-PS-ATX12-300A ATX development power supply (requires VL-CBR-2034).

4. Review Configuration

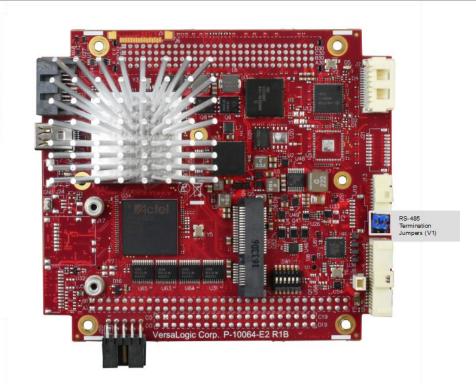
 Before you power up the system, double-check all the connections. Make sure all cables are oriented correctly and that adequate power will be supplied to the VL-EPM-39 and peripheral devices.

5. Power On

 Turn on the ATX power supply and the video monitor. If the system is correctly configured, a video signal should be present.

6. Select a Boot Drive

During startup, press <CTRL> to display the boot menu. Insert the OS installation
 CD in the CD-ROM drive and select to boot from the CD-ROM drive.


7. Install Operating System

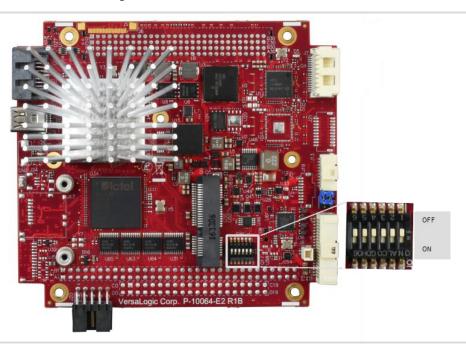
• Install the operating system according to the instructions provided by the operating system manufacturer. (See Operating System Installation on page 12.)

Jumper Blocks

JUMPERS BLOCKS IN THE AS-SHIPPED CONFIGURATION

Figure 5. Jumper Block Locations

JUMPER SUMMARY


Table 1: Jumper Summary

Jumper Block	Description	
	COM1 Rx End-point termination	
V1 [1-2]	In – COM1 terminator enabled for RS-485/RS-422	
	Out – COM1 terminator disabled (default)	
	COM2 Rx End-point termination	
V1 [3-4]	In – COM2 terminator enabled for RS-485/RS-422	
	Out – COM2 terminator disabled (default)	

Configuration Switches

This figure shows the as-shipped switch configuration with all switches in the off position. The off position is toward the center of the board.

Figure 6. Location of SW1 Configuration Switch Block

Table 2: Switch Setting Summary

SW1 Switch Position	Description
	Clears non-volatile RAM and clears resets real-time clock registers (see page 11)
Position 1	Off – Normal operation (default) On – Clears battery backed up non-volatile memory bytes 0xE-0x7F and clears battery backed-up RTC registers
	No Battery Switch (see Integrator's Note below)
Position 2	Off – A battery is being used (default) On – A battery is not being used
	Reset BIOS to factory defaults (see page 11)
Position 3	Off – Normal operation (default) On – Resets BIOS to factory defaults when the board boots.
Position 4	For factory use only. Always leave in the Off position.
Position 5	SPI Flash Security – Not supported. Leave in the Off position.
	BIOS select
Position 6	Off – Primary BIOS (default) On – Backup BIOS (optional)

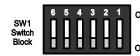
*

Integrator's Note:

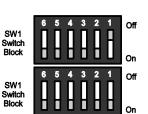
- If a battery is installed (on the CBR-4005 paddleboard or externally using the J8 connector), switch position 2 must be set to the Off position. If it is set to On, the battery will discharge quickly.
- If you don't use a battery, switch position 2 should be set to the ON position. Otherwise, boot times could increase (by as much as 30 seconds in low temperature environments).

RESETTING THE BIOS TO FACTORY DEFAULTS

Reset the BIOS to default settings using the following the instructions:


1. Power off the EPM-39 and set SW1 switch position 3 to the On position (toward the outer edge of the board).

- 2. Power on the EPM-39.
- 3. After the system boots, power off the EPM-39 and set the switch back to the Off position (toward the center of the board).


4. Power on the EPM-39.

CLEARING NON-VOLATILE RAM AND RTC REGISTERS

Clear the non-volatile RAM and RTC registers (which includes the date/time) using the following the instructions:

- 1. Power off the EPM-39.
- 2. Set SW1 switch position 1 to the On position (toward the outer edge of the board).

- 3. Wait at least two seconds and set the switch back to the Off position (toward the center of the board).
- 4. Power on the EPM-39.

BIOS Setup Utility

The EPM-39 permits users to modify the BIOS Setup utility defaults. Refer to the *EPM-39 BIOS Reference Manual* (available on the <u>EPM-39 Product Page</u>) for information on accessing and configuring settings in the BIOS Setup utility. All BIOS menus, submenus, and configuration options are described in the *EPM-39 BIOS Reference Manual*.

Operating System Installation

The standard PC architecture used on the EPM-39 makes the installation and use of most of the standard x86 processor-based operating systems relatively simple. Special optimized hardware drivers for a particular operating system, or a link to the drivers, are available at the <u>EPM-39</u> Product Page.

CPU

The EPM-39 uses the Intel 4th Generation Atom E3825 (formerly "Bay Trail") System-on-Chip (SoC) processor:

Each core contains a 512 KB L2 cache. These processors support Intel 64-bit instructions, AES Instructions, Execute Disable Bit, and Virtualization Technology.

See the <u>Intel Atom Processor E3800 Product Family Datasheet</u> of for a complete description of the CPU.

Note:

If the above link to the datasheet becomes inactive, search the internet for "Intel Bay Trail" or "E3800" and follow the results to the Intel site and datasheet.

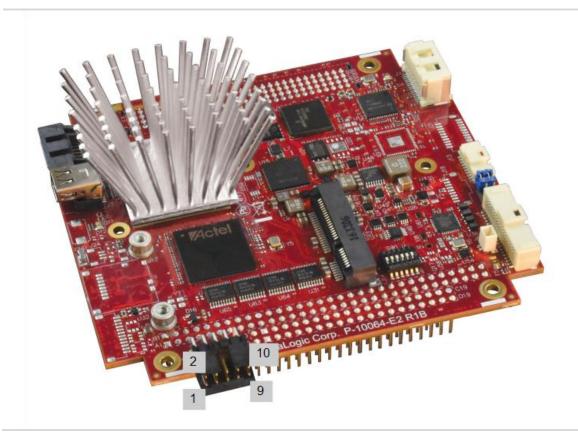
System RAM

The EPM-39 accepts one 204-pin SO-DIMM memory module (J9 connector on the bottom side of the board) with the following characteristics:

- Size Up to 8 GB, 1067 MHz CPU
- Voltage 1.35 V
- Type DDR3L (VersaLogic VL-MM9 Series modules)

I/O Interfaces

The EPM-39 board's I/O interfaces and their associated connectors are described in later chapters as follows:


- Mass Storage Interfaces (SATA and mSATA)
- Multi-purpose I/O (USB, PCIe MiniCard and User I/O)
- Serial Ports
- Video Interfaces (Mini DisplayPort)
- Network Interfaces (Ethernet)
- Expansion Interfaces (PC/104)

Power Delivery

MAIN POWER CONNECTOR

The figure below shows the location and pin orientation of the main power connector.

Figure 7. Location and Pin Orientation of the Main Power Connector

CAUTION:

To prevent severe and possibly irreparable damage to the system, it is critical that the power connector is wired correctly. Make use of all +5 VDC pins and all ground pins to prevent excess voltage drop.

Note:

The +3.3 VDC, +12 VDC and -12 VDC inputs on the power connector are only required for PC/104-*Plus* and PC/104 expansion modules that require these voltages.

The following table lists the pinout for the main power connector.

Table 3: J20 Main Power Connector Pinout

Pin	Signal
1	Ground
3	Ground
5	Ground
7	+3.3 VDC
9	Ground

Pin	Signal
2	+5 VDC
4	+12 VDC
6	-12 VDC
8	+5 VDC
10	+5 VDC

CABLING

An adapter cable, part number CBR-1008, is available for connecting the EPM-39 to an ATX power supply.

If your application requires a custom cable, the following information will be useful:

EPM-39 Board Connector	Mating Connector
FCI 78207-110HLF	FCI 69176-010LF

POWER DELIVERY CONSIDERATIONS

Using the VersaLogic approved power supply (VL-PS200-ATX) and power cable (VL-CBR-1008) ensures high quality power delivery to the board. Customers who design their own power delivery methods should take into consideration the guidelines below to ensure good power connections.

In addition, the specifications for typical operating current do not include any off-board power usage that may be fed through the main power connector. Expansion boards and USB devices plugged into the board will source additional power through the main power connector.

- Do not use wire smaller than 22 AWG. Use high quality UL 1007 compliant stranded wire.
- The length of the wire should not exceed 18 inches.
- Avoid using any additional connectors in the power delivery system.
- The power and ground leads should be twisted together, or as close together as possible to reduce lead inductance.
- A separate conductor must be used for each of the power pins.
- All power input pins and all ground pins must be independently connected between the power source and the power connector.
- Use a high quality power supply that can supply a stable voltage while reacting to widely varying current draws.

POWER BUTTON

User I/O connector J4 includes an input for a push-button power switch. Shorting J4, pin 17 to ground causes the board to enter an S5 power state (similar to the Windows Shutdown state). Shorting it again returns the board to the S0 power state and reboots the board. The button can be configured in Windows to enter an S3 power state (Sleep, Standby, or Suspend-to-RAM), an S4 power state (Hibernate or Suspend-to-Disk), or an S5 power state (Shutdown or Soft-Off).

The input can be connected to ground using the normally open contacts of a pushbutton switch or a relay, or with a switching transistor (open-collector or open-drain) capable of sinking 3.3 mA with a voltage drop that is less than 500 mV (there is a 1 k Ω resistor on the EPM-39 pulled up to 3.3 V). Do not add an external pull-up resistor to this signal.

A power button is provided on the CBR-4005 paddleboard. See Figure 21 on page 41 for the location of the reset button on the CBR-4005 paddleboard.

In configurations where a power button is not connected to the board, if the system is put into an S5 state, power can be restored by turning off the power supply and turning it back on. This behavior is set by default in the BIOS.

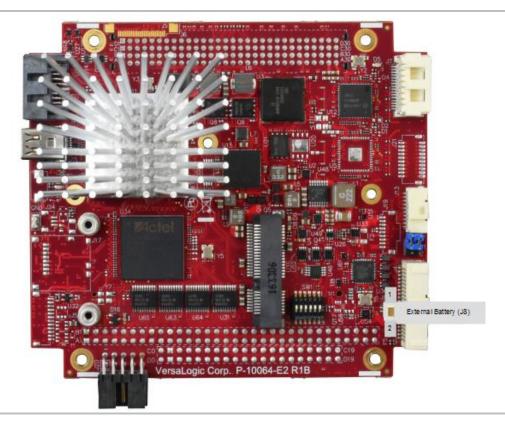
SUPPORTED POWER STATES

The table below lists the board's supported power states.

Table 4: Supported Power States

Power state	Description
S0 (G0)	Working
S1 (G1-S1)	All processor caches are flushed, and the CPUs stop executing instructions. Power to the CPUs and RAM is maintained. Devices that do not indicate they must remain on may be powered down.
S3 (G1-S3)	Commonly referred to as Standby, Sleep, or Suspend-to-RAM. RAM remains powered.
S4 (G1-S4)	Hibernation or Suspend-to-Disk. All content of main memory is saved to non-volatile memory, such as a hard drive, and is powered down.
S5 (G2)	Soft Off. Almost the same as G3 Mechanical Off, except that the power supply still provides power, at a minimum, to the power button to allow return to S0. A full reboot is required. No previous content is retained. Other components may remain powered so the computer can "wake" on input from the keyboard, clock, modem, LAN, or USB device.
G3	Mechanical off (ATX supply switch turned off).

BATTERY POWER OPTIONS


The battery circuit on the EPM-39 provides power for the Real-Time Clock (RTC) and power to store BIOS Setup utility settings in non-volatile RAM.

The EPM-39 has multiple options for providing battery power:

- Use an external battery, connected to the board through the J8 external battery connector.
- Use the battery supplied with the CBR-4005 paddleboard

The figure below shows the location and pin orientation of the external battery connector.

Figure 8. Location and Pin Orientation of the External Battery Connector

CABLING

If your application requires a custom cable, the following information will be useful:

EPM-39 Board Connector	Mating Connector	
Molex 501331-0207	Molex 501330-0200	

VL-CBR-0203 EXTERNAL BATTERY MODULE

The VL-CBR-0203 external battery module is compatible with the EPM-39. For more information, contact <u>Sales@VersaLogic.com</u>.

Figure 9. VL-CBR-0203 Latching Battery Module

Real Time Clock (RTC)

The EPM-39 features a real-time clock/calendar (RTC) circuit. The RTC can be set using the BIOS Setup utility.

The EPM-39 supplies RTC voltage in S5, S3, and S0 states, but requires an external +2.75 V to +3.3 V the battery to maintain RTC functionality and RTC CMOS RAM when the board is not powered. The battery connection can be made to either (but not both) of the following:

- J8 external battery connector
- J4 user I/O connector

1 Integrator's Note:

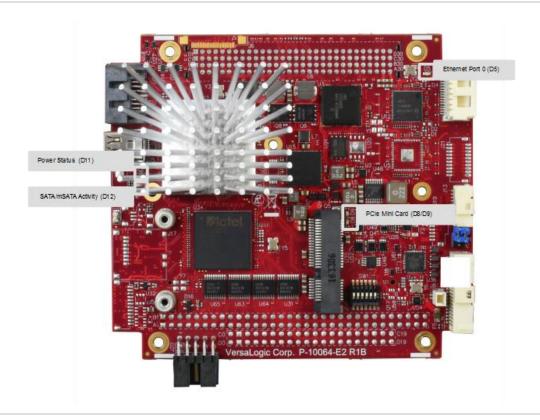
There is no on-board battery. The EPM-39 board will operate without a battery, but to save the date and time, use a VL-CBR-4005 paddleboard (which includes a battery) or connect an external battery to connector J8.

Push-Button Reset

User I/O connector J4 includes an input for a push-button reset switch. Shorting J4, pin 18 to ground causes the EPM-39 to reboot.

The input can be connected to ground using the normally open contacts of a pushbutton switch or a relay, or with a switching transistor (open-collector or open-drain) capable of sinking 3.3 mA with a voltage drop that is less than 500 mV (there is a 1 k Ω resistor on the EPM-39 pulled up to 3.3 V). Do not add an external pull-up resistor to this signal.

1 Integrator's Note:


The reset button has a switch de-bounce circuit in the FPGA that requires the button to be held asserted at least 125 ms (1/8 second) to reset the board. Holding the reset asserted on a Bay Trail processor does not continue to hold the processor in reset; it only resets on the edge of the assertion that follows the 125 ms de-bounce time interval).

A reset button is provided on the CBR-4005 paddleboard. See Figure 21 on page 41 for the location of the reset button on the CBR-4005 paddleboard.

LEDs/Indicators

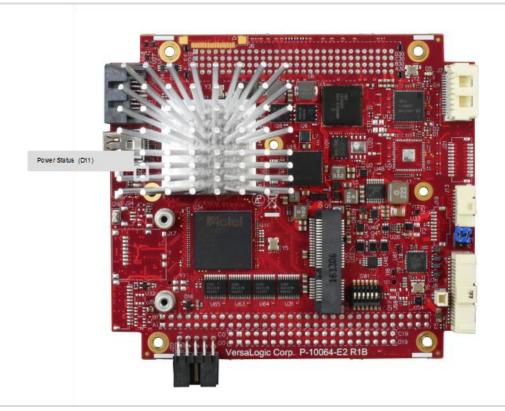
This figure shows the location of the boards LEDs/indicators.

Figure 10. Locations of the LEDs/Indicators

PROGRAMMABLE LED

User I/O connector J4 includes an output signal for attaching a software controlled LED. Connect the cathode of the LED to J4, pin 16; connect the anode to +3.3 V. An on-board 120 Ω resistor limits the current when the circuit is turned on. A programmable LED is provided on the CBR-4005 paddleboard. For instructions on how to switch the Programmable LED on and off, refer to the *EPM-39 Programmer's Reference Manual* (available on the <u>EPM-39 Product Page</u>).

POWER LEDS


The figure below shows the location of the dual green/yellow LED. This dual LED indicates the following:

■ The green LED illuminates when all power rails are within specified limits and indicates that the board is in the S0 power state. If any power rail is not within specified limits, the green LED will not illuminate. The green LED blinks at a slow rate when the processor is in a sleep or hibernate mode indicating that the sustain rail power is still within specified limits

 The yellow LED is a fault indicator that illuminates if there is a problem with the processor booting. (Software can also be used to turn on this LED to indicate a major software failure.)

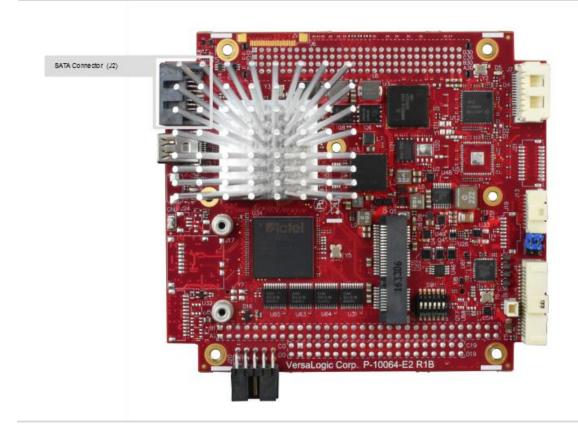
The power LED on the VL-CBR-4005 indicates that the paddleboard is being powered by the +3.3 V supply (though it does not indicate that all S0 power supplies are within specified limits). The LED is lit only when the board is in the S0 power state. If the board enters a Sleep or Hibernate mode, the LED will not be lit.

Figure 11. Location of the D11 Dual-color LED

External Speaker

A miniature 8 Ω speaker can be connected between user I/O connector J4, pin 15 (SPKR#) and J4, pin 13 (V3P3). A speaker is provided on the CBR-4005 paddleboard.

4

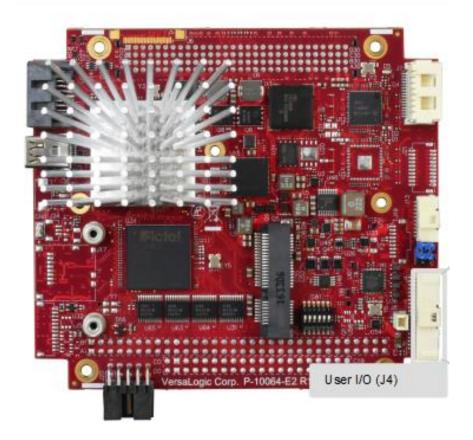

Mass Storage Interfaces

SATA

The EPM-39 provides one 3 GB/s SATA port (J2). The SATA connector is a standard 7-pin right-angle connector with latching capability.

Power to the SATA drive is provided by the ATX power supply. Note that the standard SATA drive power connector is different from the typical 4-pin Molex connector used on IDE drives. Most current ATX power supplies provide SATA connectors, and many SATA drives provide both types of power connectors. If the power supply you are using does not provide SATA connectors, adapters are available.

Figure 12. Location of the SATA Port



Multi-purpose I/O

USB Interfaces

The EPM-39 includes four USB 2.0 host ports. The four USB 2.0 ports are incorporated into the J4 user I/O connector, with standard USB Type A connectors located on the VL-CBR-4005 paddleboard.

Figure 13. Location of the User I/O to VL-CBR-4005

PCIe Mini Card / mSATA

The socket at location J14 accepts a full-height PCI Express Mini Card or an mSATA module.

The PCIe Mini Card interface includes one PCIe x1 lane, one hubbed USB 2.0 channel, and the SMBus interface. The socket is compatible with plug-in Wi-Fi modems, GPS receivers, Flash data storage, and other cards for added flexibility. The VL-MPEs-F1E series of mSATA modules provide flash storage of 4 GB, 16 GB, or 32 GB.

For more information on PCIe Mini Cards offered by VersaLogic, contact Sales@VersaLogic.com.

To secure a Mini Card or mSATA module to the on-board standoffs, use two M2.5 x 6mm pan head Philips nylon screws. These screws are available in quantities of 10 in the VL-HDW-108 hardware kit from VersaLogic.

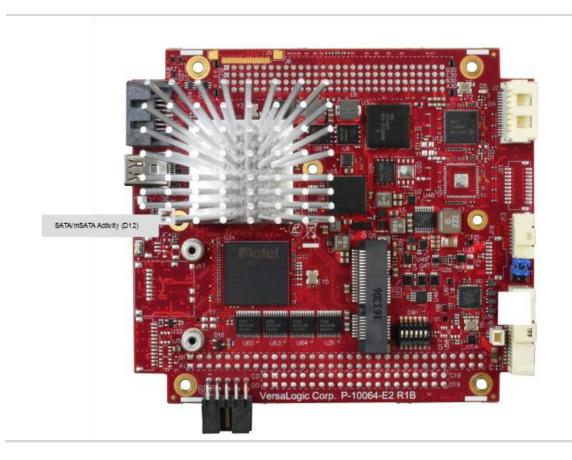
Table 5: PCle Mini Card / mSATA Pinout

J14 Pin	PCIe Mini Card Signal Name	PCIe Mini Card Function
1	WAKE#	Wake
2	3.3VAUX	3.3V auxiliary source
3	NC	Not connected
4	GND	Ground
5	NC	Not connected
6	1.5V	1.5V power
7	NC	Not connected
8	NC	Not connected
9	GND	Ground
10	NC	Not connected
11	REFCLK-	Reference clock input –
12	NC	Not connected
13	REFCLK+	Reference clock input +
14	NC	Not connected
15	GND	Ground
16	NC	Not connected
17	NC	Not connected
18	GND	Ground
19	NC	Not connected
20	W_DISABLE#	Wireless disable
21	GND	Ground
22	PERST#	Card reset
23	PERn0	PCIe receive –
24	3.3VAUX	3.3V auxiliary source
25	PERp0	PCIe receive +
26	GND	Ground
27	GND	Ground
28	1.5V	1.5V power
29	GND	Ground
30	SMB_CLK	SMBus clock
31	PETn0	PCIe transmit –
32	SMB_DATA	SMBus data
33	PETp0	PCIe transmit +
34	GND	Ground
35	GND	Ground
36	USB_D-	USB data –
37	GND	Ground
38	USB_D+	USB data +
39	3.3VAUX	3.3V auxiliary source
40	GND	Ground
41	3.3VAUX	3.3V auxiliary source
42	LED_WWAN#	Wireless WAN LED
43	GND	mSATA detect (Note 1)
44	LED_WLAN#	Wireless LAN LED

	0474
mSATA Signal Name	mSATA Function
Reserved	Not connected
+3.3V	3.3V source
Reserved	Not connected
GND	Ground
Reserved	Not connected
+1.5V	1.5V power
Reserved	Not connected
Reserved	Not connected
GND	Ground
Reserved	Not connected
GND	Ground
Reserved	Not connected
Reserved	Not connected
GND	Ground
Reserved	Not connected
Reserved	Not connected
GND	Ground
Reserved	Not connected
+B	Host receiver diff. pair +
+3.3V	3.3V source
-B	Host receiver diff. pair –
GND	Ground
GND	Ground
+1.5V	1.5V power
GND	Ground
Two Wire I/F	Two wire I/F clock
-A	Host transmitter diff. pair –
Two Wire I/F	Two wire I/F data
+A	Host transmitter diff. pair +
GND	Ground
GND	Ground
Reserved	Not connected
GND	Ground
Reserved	Not connected
+3.3V	3.3V source
GND	Ground
+3.3V	3.3V source
Reserved	Not connected
GND/NC	Ground/not connected (Note 2)
Reserved	Not connected

	_		
J14 Pin		PCIe Mini Card Signal Name	PCIe Mini Card Function
45		NC	Not connected
46		LED_WPAN#	Wireless PAN LED
47		NC	Not connected
48		1.5V	1.5V power
49		Reserved	Reserved
50		GND	Ground
51		Reserved	Reserved
52		3.3VAUX	3.3V auxiliary source

mSATA Signal Name	mSATA Function
Vendor	Not connected
Reserved	Not connected
Vendor	Not connected
+1.5V	1.5V power
DA/DSS	Device activity (Note 3)
GND	Ground
GND	Ground (Note 4)
+3.3V	3.3V source


Notes:

- This pin is not grounded on the EPM-39 since it can be used to detect the presence of an mSATA module versus a PCIe Mini Card. Grounding this pin is available as an option on custom boards.
- 2. This pin is not grounded on the EPM-39 to make it available for mSATA module detection.
- 3. This signal drives the blue LED activity indicator. This LED lights with mSATA disk activity, if supported by the mSATA module.
- 4. Some PCIe modules use this signal as a second Mini Card wireless disable input. On the EPM-39, this signal is available for use for mSATA versus PCIe Mini Card detection. There is an option in BIOS setup for setting the mSATA detection method.

MSATA ACTIVITY LED

The next figure shows the location (D12) of the SATA/mSATA activity blue LED. This LED indicates activity on either the SATA or the mSATA interface. Not all mSATA drives provide this disk activity signal.

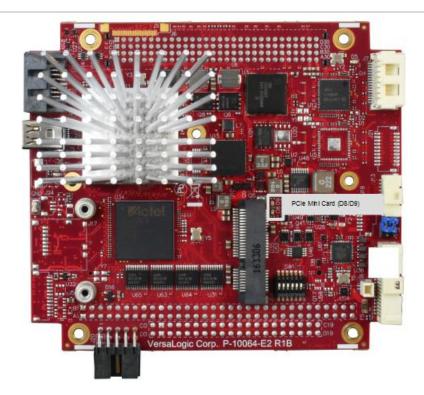
Figure 14. Location of the SATA/mSATA Activity LED

PCIE MINI CARD LEDS

Two dual-colored PCIe Mini Card LEDs are provided on the EPM-39 at locations D9 and D8. This table lists the states of the LEDs. The next figure shows the location of the PCIe Mini Card LEDs.

Table 6: PCle Mini Card LED States

LED	Color	Status (when lit)
	Green	Activity on Wireless PAN (Note)
D9	Yellow	Illuminates when the 3.3 V power to the Mini Card is on. It alerts users to not hotplug the Mini Card. By default, Mini Card power stays on when the processor is in sleep modes.
D8	Green	Activity on Wireless WAN (Note)
Do	Yellow	Activity on Wireless LAN (Note)

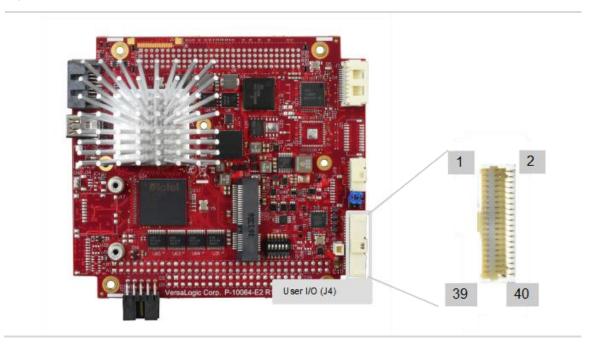

Note: These LEDs will illuminate when the associated device is installed and capable of transmitting. Their function is determined by the installed device.

Integrator's Note:

The 3.3 V power to the Mini Card can be controlled by the FPGA. By default, the power is always on, but there is a register setting that turns this power off in sleep modes. The Mini Card 1.5 V power is always turned off in sleep modes.

Figure 15. Location of PCIe Mini Card LEDs

User I/O Connector


The 40-pin J4 I/O connector incorporates the signals for the following:

- Four USB ports
- Eight GPIO lines. The eight GPIO lines on the paddleboard each have an alternate mode, accessible using the FPGA's AUXMOD1 register. Refer to the *EPM-39 Programmer's Reference Manual* for more information on FPGA registers.
- Two LEDs (Ethernet link status LED and a programmable LED)
- Push-button power switch
- Push-button reset switch
- Speaker output

This connector uses IEC 61000-4-2-rated TVS components to help protect against ESD damage.

The next figure shows the location and pin orientation of the user I/O connector.

Figure 16. Location and Pin Orientation of User I/O Connector

This table provides the pinout of the user I/O connector.

Table 7: J4 I/O Connector Pinout and Pin Orientation

Pin	Signal	Pin	Signal
1	+5 V (V5_USB01)	2	GND
3	USB0_P	4	USB1_P
5	USB0_N	6	USB1_N
7	+5V (V5_USB23)	8	GND
9	USB2_P	10	USB3_P
11	USB2_N	12	USB3_N
13	+3.3 V (Note 1)	14	GND
15	SPKR#	16	PLED#
17	PWR_BTN#	18	RST_BTN#
19	GND	20	GND
21	I2C Clock	22	V_BATT
23	I2C Data	24	RETURN_BATT
25	GND	26	GND
27	FPGA GPIO1	28	FPGA GPIO2
29	FPGA GPIO3	30	FPGA GPIO4
31	GND	32	GND
33	FPGA GPIO5	34	FPGA GPIO6
35	FPGA GPIO7	36	FPGA GPIO8
37	+3.3 V (Note 2)	38	GND
39	ETH0 LED	40	Reserved

Notes:

CABLING

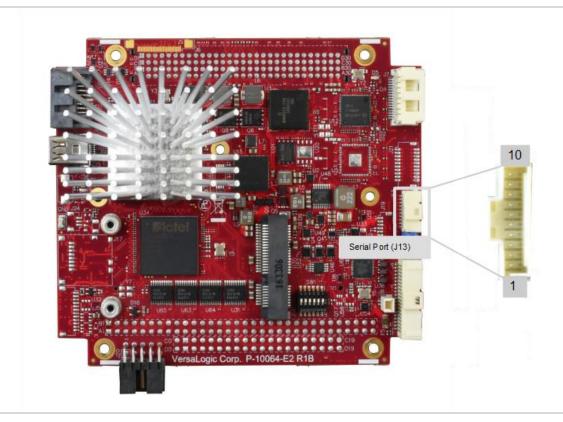
An adapter cable, part number CBR-4005 is available for connecting the CBR-4005 paddleboard to the EPM-39. This is a 12-inch, Pico-Clasp 40-pin to 40-pin cable

If your application requires a custom cable, the following information will be useful:

EPM-39 Board Connector	Mating Connector
Molex 501571-4007	Molex 501189-4010

^{1.} This 3.3 V power goes off in sleep modes. The SPKR# uses this power as should the PLED# (there is no requirement for PLED# to use this power, but the CBR-4005 paddleboard does).

^{2.} This 3.3 V power can be turned on our off similar to the 3.3V power to the Mini Card via the FPGA (can go off in sleep modes or always stay on; by default it goes off in sleep modes). It is used for the 10 k Ω pullup resistor power on the 8x GPIOs and usually for the 2x Ethernet LEDs, however, the Ethernet LEDs can be powered by a 3.3 V power source.


Serial Ports

The EPM-39 features two on-board 16550-based serial communications channels located at standard PC I/O addresses. The serial ports can be operated in RS-232 4-wire, RS-422, or RS-485 modes. IRQ lines are chosen in the BIOS Setup utility. Each COM port can be independently enabled, disabled, or assigned a different I/O base address in the BIOS setup utility.

Serial Port Connectors

The next figure shows the location and pin orientation of the serial port connector.

Figure 17. Location and Pin Orientation of Serial Port Connector

SERIAL PORT CONNECTOR PINOUTS

Table 8: J13 COM1/COM2 Connector Pinout

Pin	RS-232 Signal	RS-422/RS-485 Signal	Port	
1	RTS1	TXD1_P		
2	TXD1#	TXD1_N	COM1	
3	CTS1	RXD1_P	COIVIT	
4	RXD1#	RXD1_N		
5	GND	GND	_	
6	RTS2	TXD2_P		
7	TXD2#	TXD2_N	COM2	
8	CTS2	RXD2_P	COIVIZ	
9	RXD2#	RXD2_N		
10	GND	GND	_	

CABLING

An adapter cable, part number CBR-1014, is available for routing the J13 signals to 9-pin D-sub connectors. This is a 12-inch, Pico-Clasp 10-pin to two 9-pin D-sub connector cable.

If your application requires a custom cable, the following information will be useful:

EPM-39 Board Connector	Mating Connector
Molex 501331-1007	Molex 501330-1000

RS-485 MODE LINE DRIVER CONTROL

The transmit line driver can be automatically turned on and off based on data availability in the UART output FIFO. This mode can be enabled in the BIOS setup utility. The transmit line driver can be enabled in the BIOS Setup utility.

Video Interfaces

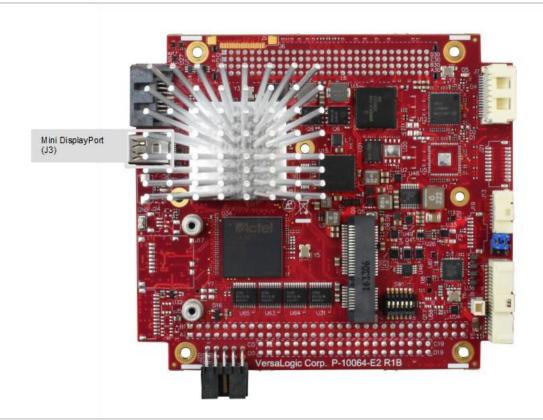
The EPM-39 incorporates the Intel Gen-7 graphics core with four Execution Units and Turbo Boost. It supports two independent displays. It also supported formats including DirectX 11, OpenGL 3, VP8, MPEG2, H.264, VC1, 2 HD streams (1080p@30fps), Flash and WMP support.

The analog (VGA) and Mini DisplayPort video interfaces support Extended Desktop, Clone, and Twin display modes.

The optional VL-EPH-V6 video adapter card converts DisplayPort output to LVDS for flat panel operation.

Mini DisplayPort Connector

DisplayPort consists of three interfaces:


- Main Link transfers high-speed isochronous video and audio data
- Auxiliary channel used for link management and device control; the EDID is read over this interface
- Hot Plug Detect indicates that a cable is plugged in

The DisplayPort interface supports:

- Audio signaling
- DP++ mode allowing connection to an HDMI device through a passive adapter.
 "Passive" means that the adapter does not require external power (because it uses the DP port's 3.3 V power) and it does not require software drivers.

The next figure shows the location of the 20-pin Mini DisplayPort connector. Table 9 lists the pinout of the J3 Mini DisplayPort connector.

Figure 18. Location of the Mini DisplayPort Connector

Table 9: J3 Mini DisplayPort Connector Pinout

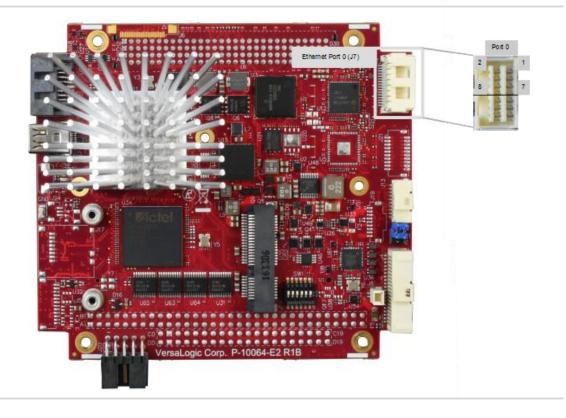
Pin	Signal
1	GND
3	ML_LANE0_P
5	ML_LANE0_N
7	GND
9	ML_LANE1_P
11	ML_LANE1_N
13	GND
15	ML_LANE2_P
17	ML_LANE2_N
19	RTN

Pin	Signal
2	HOT PLUG DETECT
4	CONFIG 1
6	CONFIG 2
8	GND
10	ML_LANE3_P
12	ML_LANE3_N
14	GND
16	AUX_CH_P
18	AUX_CH_N
20	DP_POWER

Console Redirection

The EPM-39 can be configured for remote access by redirecting the console to a serial communications port. The BIOS setup utility and some operating systems (such as MS-DOS) can use this console for user interaction. The default settings for the redirected console are as follows:

- 115,200 baud rate
- 8 data bits, no parity
- 1 stop bit)
- No parity
- No flow control


Network Interfaces

The EPM-39 provides a single on-board Intel I210-IT Gigabit Ethernet controller. The controller provides a standard Ethernet interface for 1000Base-T, 100Base-TX, and 10Base-T applications. The I210-IT Ethernet controller auto-negotiates connection speed. Drivers are available to support a variety of operating systems.

ETHERNET CONNECTOR

The J7 connector provides access to the Ethernet port 0. The J7 connector uses IEC 61000-4-2-rated TVS components to help protect against ESD damage. The figure below shows the location and pin orientation of the Ethernet connector.

Figure 19. Location and Pin Orientation for the J7 Ethernet Connector

The table below lists the pinout of the Ethernet connector.

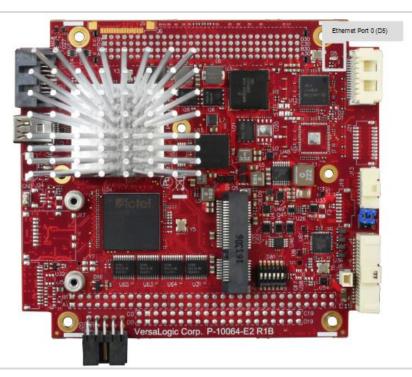
Table 10: Ethernet Connector Pinout

	Pin	10/100 Signals	10/100/1000 Signals	Pin	10/100 Signals	10/100/1000 Signals	
	1	- Auto Switch (Tx or Rx)	BI_DD-	2	+ Auto Switch (Tx or Rx)	BI_DD+	
÷ 0	3	- Auto Switch (Tx or Rx)	BI_DB-	4	+ Auto Switch (Tx or Rx)	BI_DB+	t 0
Port	5	- Auto Switch (Tx or Rx)	BI_DC-	6	+ Auto Switch (Tx or Rx)	BI_DB+	Por
	7	- Auto Switch (Tx or Rx)	BI_DA-	8	+ Auto Switch (Tx or Rx)	BI_DA+	

CABLING

An adapter cable, part number CBR-1605, is available. This is a 12-inch, 8-pin Click-Mate to a RJ-45 connector cable.

If your application requires a custom cable, the following information will be useful:


EPM-39 Board Connector	Mating Connector
Molex 503148-1690	Molex 503149-1600

ON-BOARD ETHERNET STATUS LEDS

On-board status LEDs are provided for the Ethernet port:

D5 (green LED) provides status for Ethernet port 0

Figure 20. Location of Ethernet Status LED

Table 11: Ethernet Status LEDs

Ethernet Port	LED	State	Description
Port 0 D5	On	Cable connected (blinks with activity)	
FULL	D5	Off	Cable not connected

PC/104-Plus Expansion Bus

The EPM-39 provides a legacy stack-down PCI connector at locations J11 (for PCI) and J10 (for ISA) on the bottom side of the board for PC/104-*Plus* (PCI +ISA) as well as PCI-104 (PCI only) and PC/104 (ISA only) expansion modules. Figure 3 on page 3 shows the locations of these connectors.

Integrator's Notes:

- PC/104 ISA only modules (those that have no PCI connector) must not be positioned below the PC/104-Plus (PCI+ISA) modules in the stack.
- Modules with PCI interfaces must be above those with only ISA interfaces.
- PCI-104 PCI only modules (those with no ISA connector) must not be positioned below the PC/104-Plus (PCI+ISA) modules in the stack.
- In general, PC/104 (ISA only) and PCI-104 (PCI only) cards can never be used together in a stack.

The table below lists the maximum PC/104-*Plus* slot current rating on the EPM-39. This is the aggregate power available to both the PCI and ISA connectors. ISA does not use +3.3 V power, so all of the +3.3 V power is available for the PCI connector.

Table 12: PCI/104-Plus Connector (PCI) Maximum Current

Voltage	Maximum Current
+5 V	4.0 A
+3.3 V	3.0 A
+12 V	1.0 A
-12 V	0.5 A

ISA BUS (ON PC/104-PLUS AND PC/104 EXPANSION MODULES)

Refer to the ISA sections of the <u>PC/104-Plus Specification</u> for a complete description of this interface.

The EPM-39 implements the ISA bus on PC/104-*Plus* and PC/104 expansion modules using an LPC-to-ISA bridge implemented in the FPGA. This LPC-to-ISA bridge supports all features except the following:

- The ISA bus must not be mastered by an external module. The EPM-39 is always the bus master. The MASTER signal on pin D17 of J10 is not connected.
- The REFRESH output signal on B19 of J10 is not supported; it is pulled up to a high logic level.

- DMA is not supported. The seven DACKx outputs on pins B15, B17, B26, D8, D10, D12, and D14 on J10 are pulled up to a high logic level. The seven DRQx inputs on pins B6, B16, B18, D9, D11, D13, and D15 on J10 are not connected. The Terminal Count (TC) output on pin B27 of J10 is pulled low.
- -5.0V power is not provided on J10 pin B5. This pin is not connected.

Most PC/104-Plus (PCI +ISA) or PC/104 (ISA only) expansion modules will work, but be sure to check the requirements of your PC/104 card against the list above.

ISA I/O SUPPORT

Both 8-bit and 16-bit I/O cycles are supported, but for 16-bit cycles the PC/104 (ISA) module must be 16-bit capable and must assert IOCS16#.

The next table lists the I/O ranges available on the ISA bus unless there is a device claiming the range on the LPC or PCI bus. The FPGA on the EPM-39 uses I/O addresses 0xC80-0xCBF and, if enabled, the FPGA has two COM ports that can be configured in the BIOS Setup utility to map to various address ranges.

By default, the two COM ports in the FPGA are enabled and occupy the I/O address ranges of 0x3F8-0x3FF and 0x2F8-0x2FF. The following are the I/O address ranges available on the ISA bus when the BIOS is configured to factory defaults.

Table 13: Available ISA Bus I/O Ranges

■ 0x0 – 0x1F	■ 0x3E – 0x3F	■ 0x93 – 0x9F	■ 0x300 – 0x3AF
■ 0x22 – 0x23	■ 0x43 – 0x4F	■ 0xA2 – 0xA3	■ 0x3BC – 0x3BF
■ 0x26 - 0x27	■ 0x53 – 0x5F	■ 0xA6 – 0xA7	■ 0x3E0 – 0x3F7
■ 0x2A – 0x2B	■ 0x62	■ 0xAA – 0xAB	■ 0x480 – 0x4CF
■ 0x2E – 0x2F	■ 0x66	■ 0xAE – 0xAF	■ 0x4D2 – 0x4FF
■ 0x32 – 0x33	■ 0x68 – 0x70	■ 0xB6 – 0xB7	■ 0x600 – 0xC7F
■ 0x36 - 0x37	■ 0x78 – 0x7F	■ 0xBA – 0xBB	■ 0xCC0 – 0xCF8
■ 0x3A – 0x3B	■ 0x90 – 0x91	■ 0xBE – 0x2F7	■ 0xCFA – 0xCFB

Assuming the COM ports in the FPGA are disabled, the available I/O base addresses for COM ports on the ISA bus are as follows:

0x200
 0x228
 0x338
 0x208
 0x238
 0x3E8
 0x220
 0x2E8
 0x3F8

Each COM port in the FPGA that is enabled will use one of these I/O base addresses and, in that case, that 8 byte I/O range will not be available on the ISA bus. PCI devices may be assigned I/O space, but that usually occurs at I/O address 0x1000 or higher so as to not conflict with legacy I/O devices.

ISA MEMORY SUPPORT

The following memory addresses are available on the ISA bus:

0xA0000 – 0xB7FFF

ISA IRQ SUPPORT

The following IRQs are supported on the ISA bus:

- IRQ3
 IRQ9
- IRQ4
 IRQ10
- IRQ5
 IRQ11
- IRQ6
 IRQ12
- IRQ7
 IRQ15

Each of the IRQs must be enabled in the BIOS Setup utility before they can be used. (All are disabled by default.)

Because ISA IRQ sharing is not supported, IRQs may not be available to the ISA bus due to operating system limitations.

PCI BUS (ON PC/104-PLUS AND PCI-104 EXPANSION MODULES)

Refer to the PCI sections of the $\underline{PC/104-Plus\ Specification}$ for a complete description of this interface.

Make sure to correctly configure the PCI slot position jumpers on each PC/104-*Plus* or PCI-104 module appropriately.

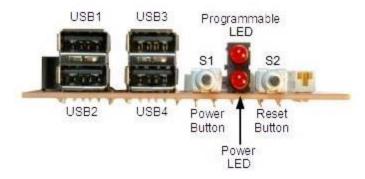
The BIOS automatically allocates I/O, memory, and interrupt resources.

System Resources and Maps

Refer to the EPM-39 Programmer's Reference Manual for the following information:

- Memory map
- IRQ map
- I/O map
- FPGA register map
- FPGA register descriptions
- Programming information for certain hardware interfaces.


CBR-4005 Paddleboard


CBR-4005 Paddleboard

CBR-4005 CONNECTORS AND INDICATORS

The figure below shows the locations of the connectors, switches, and LEDs on the CBR-4005 paddleboard.

Figure 21. CBR-4005 Connectors, Switches, and LEDs

USER I/O CONNECTOR

The next figure shows the location and pin orientation of the user I/O connector.

Figure 22. Location and Pin Orientation of the User I/O Connector

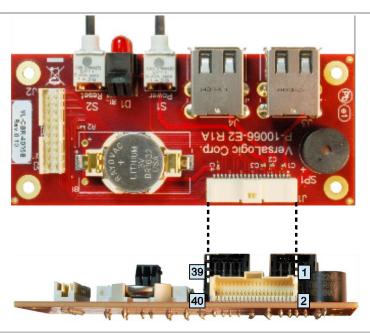


Table 14: User I/O Connector Pinout

Pin	Signal
1	+5 V
3	USB1_P
5	USB1_N
7	+5V
9	USB3_P
11	USB3_N
13	+3.3 V
15	SPKR#
17	PWR_BTN#
19	GND
21	Reserved
23	Reserved
25	GND
27	FPGA GPIO1
29	FPGA GPIO3
31	GND
33	FPGA GPIO5
35	FPGA GPIO7
37	+3.3 V
39	ETH0 LED

Pin	Signal
2	GND
4	USB2_P
6	USB2_N
8	GND
10	USB4_P
12	USB4_N
14	GND
16	PLED#
18	RST_BTN#
20	GND
22	V_BATT
24	V_BATT_RETURN
26	GND
28	FPGA GPIO2
30	FPGA GPIO4
32	GND
34	FPGA GPIO6
36	FPGA GPIO8
38	GND
40	Reserved

CABLING

An adapter cable, part number CBR-4005, is available for connecting the CBR-4005 paddleboard to the EPM-39. This is a 12-inch, Pico-Clasp 40-pin to 40-pin cable

If your application requires a custom cable, the following information will be useful:

CBR-4005 Board Connector	Mating Connector	
Molex 501571-4007	Molex 501189-4010	

ON-BOARD BATTERY

CAUTION:

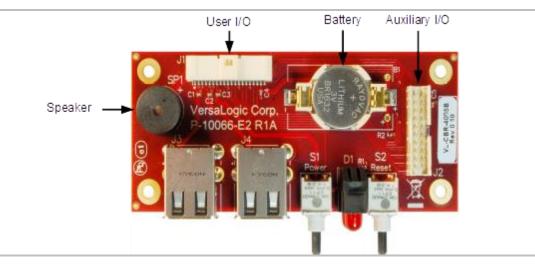
To prevent shorting, premature failure or damage to the Lithium battery, do not place the board on a conductive surface such as metal, black conductive foam or the outside surface of a metalized ESD protective pouch. The Lithium battery may explode if mistreated. Do not recharge, disassemble, or dispose of the battery in fire. Dispose of used batteries promptly.

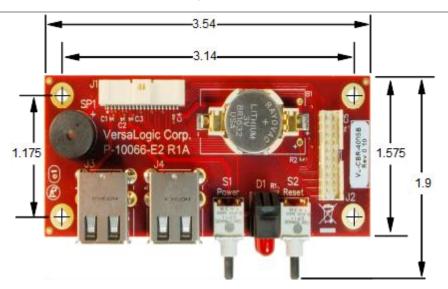
Nominal battery voltage is 3.0 V. If the voltage drops below 2.7 V, contact the factory for a replacement. The life expectancy under normal use is approximately five years.

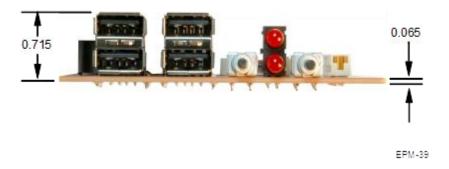
AUXILIARY I/O CONNECTOR

The figure below shows the location and pin orientation of the auxiliary I/O connector.

Figure 23. Location and Pin Orientation of Auxiliary I/O Connector




Table 15: Auxiliary I/O Connector Pinout


Pin	Signal
1	Reserved
3	Reserved
5	GND
7	FPGA GPIO1
9	FPGA GPIO3
11	GND
13	FPGA GPIO5
15	FPGA GPIO7
17	+3.3 V
19	Ethernet Port 0 LED

Pin	Signal
2	V_BATT
4	V_BATT_RETURN
6	GND
8	FPGA GPIO2
10	FPGA GPIO4
12	GND
14	FPGA GPIO6
16	FPGA GPIO8
18	GND
20	Reserved

DIMENSIONS AND MOUNTING HOLES

Figure 24. CBR-4005 Dimensions and Mounting Holes

Thermal Considerations

This chapter discusses the following topics related to thermal configuration:

EPM-39 thermal characterization

The Thermal Solution for Your Application

This section provides guidelines for the overall system thermal engineering effort.

HEAT SINK

The heat sink supplied with the EPM-39 is the basis of the thermal solution. The heat sink draws heat away from the CPU chip as well as other critical components such as the power supply / management unit, the PCIe-to-PCI Bridge, and the Ethernet interfaces. Other components rely on the ambient air temperature being maintained at or below the maximum specified 85 °C.

CAUTION:

The heat sink is permanently affixed to the EPM-39 and must not be removed. Removal of the heat plate voids the product warranty. Attempting to operate the EPM-39 without the heat sink voids the product warranty and can damage the CPU.

GENERAL SYSTEM-LEVEL CONSIDERATIONS

The EPM-39 thermal solution is part of the larger thermal system of the application. Other PC/104 boards stacked under the EPM-39 and any other nearby heat sources (power supplies or other circuits), all contribute to how the EPM-39 will perform from a thermal standpoint.

The ambient air surrounding the EPM-39 needs to be maintained at 85 °C or below. This can prove to be challenging depending on how and where the EPM-39 is mounted in the end user system. Standard methods for addressing this requirement include the following:

- Provide a typical airflow of 100 linear feet per minute (LFM) / 0.5 linear meters per second (as described in the section titled EPM-39 Thermal Characterization) within the enclosure
- Position the EPM-39 board to allow for convective airflow
- Lower the system level temperature requirement as needed

The decision as to which thermal solution to use can be based on several factors including (but not limited to) the following:

- Number of CPU cores in the SoC (single, dual, or quad)
- CPU core program utilization
- Temperature range within which the EPM-39 will be operated
- Air movement (or lack of air movement)
- Video processing intensity
- Memory access demands
- High speed I/O usage (PCIe, USB and SATA usage)

Most of these factors involve the demands of the user application on the EPM-39 and cannot be isolated from the overall thermal performance. Due to the interaction of the user application, the EPM-39 thermal solution, and the overall environment of the end system, thermal performance cannot be rigidly defined.

CPU THERMAL TRIP POINTS

The CPU cores in the EPM-39 have their own thermal sensors. Coupled with these sensors are specific reactions to four thermal trip points. The next table describes the four thermal trip points.

Table 16: CPU Thermal Trip Points

Trip Point	Description
Active (Note 1)	The fan is turned on when this temperature is reached
Passive (Note 2)	At this temperature, the CPU cores throttle back to a lower speed. This reduces the power draw and the temperature.
Critical (Note 3)	At this temperature, the operating system typically puts the board into a sleep or other low-power state.
Maximum core temperature	The CPU turns itself off when this temperature is reached. This is a fixed trip point and cannot be adjusted.

Notes:

- 1. The default value in the BIOS Setup program for this trip point is 55 °C.
- 2. The default value in the BIOS Setup program for this trip point is 105 °C.
- 3. The default value in the BIOS Setup program for this trip point is 110 °C.

These trip points allow maximum CPU operational performance while maintaining the lowest CPU temperature possible. The long-term reliability of any electronic component is degraded when it is continually run near its maximum thermal limit. Ideally, the CPU core temperatures would be kept well below 100 °C with only brief excursions above.

CPU temperature monitoring programs are available to run under both Windows and Linux. The following table lists some of these hardware monitoring programs.

Table 17: Temperature Monitoring Programs

Operating System	Program Type	Description
	Core Temperature	http://www.alcpu.com/CoreTemp/
Windows	Hardware Monitor	http://www.cpuid.com/softwares/hwmonitor.html
	Open Hardware Monitor	http://openhardwaremonitor.org/
Linux	lm-sensors	http://en.wikipedia.org/wiki/Lm_sensors

THERMAL SPECIFICATIONS, RESTRICTIONS, AND CONDITIONS

Graphical test data is in the section titled EPM-39 Thermal Characterization. Refer to that section for the details behind these specifications. These specifications are the thermal limits for using the EPM-39 with one of the defined thermal solutions.

Due to the unknown nature of the entire thermal system, or the performance requirement of the application, VersaLogic cannot recommend a particular thermal solution. This information is provided for user guidance in the design of their overall thermal system solution.

OVERALL RESTRICTIONS AND CONDITIONS

- Ranges shown assume less than 95% CPU utilization.
- Keep the maximum CPU core temperature below 100°C.
- The ambient air surrounding the EPM-39 needs to be maintained at 85 °C or below. This includes the space between this CPU board and any board it is stacked on top of it. Included is the space beneath an installed miniPCIe expansion board and the installed SODIMM. A recommended overall air flow of 100 Linear Feet per Minute (LFM) / 0.5 Linear Meters per Second (LMS) addresses this requirement. If this air flow is not provided, other means to keep the adjacent air at 85 °C or below must be implemented.

HEAT SINK CONSIDERATIONS:

■ At 85°C air temperature and 95% CPU utilization, there will be little – if any – thermal margin to a CPU core temperature of 100 °C or the passive trip point (see test data). If this is the use case, consider adding a fan or other additional air flow.

Integrator's Note:

The ambient air surrounding the EPM-39 needs to be maintained at 85 °C or below.

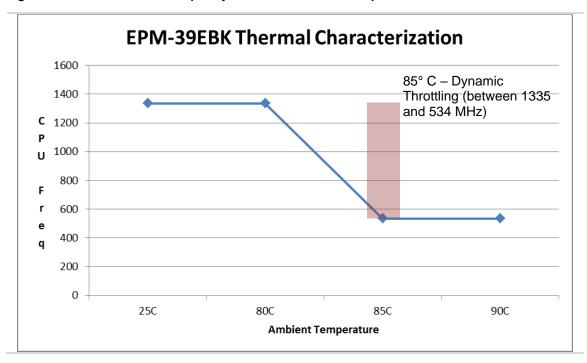
EPM-39 Thermal Characterization

The EPM-39 board underwent the following thermal characterization tests:

- Test Scenario: Dual core EPM-39EBK
- The following table describes the thermal testing setup for the board.

Table 18: EPM-39 Thermal Testing Setup

	EPM-39 (SandCat) dual core CPU with:	
Hardware configuration	 8 GB of DDR3 DRAM (VersaLogic part number VL-MM9-8EBN) 	
	 One attached DisplayPort device 	
	■ Two RS-232 ports in loopback configuration	
	■ An active Ethernet port	
	■ Two USB 2.0 ports in loopback configuration	
BIOS	■ ID string: 1	
	 Passive thermal trip point setting: 105 °C 	
	 Critical thermal trip point setting: 110 °C 	
Operating system	Microsoft Windows 10 v1607,b14393.0	
Test software	Passmark BurnIn Test v8.1 b1016- CPU utilization ~95%	
	 Intel Thermal Analysis Tool (TAT) v5.0.1026 Primarily used to read the CPU core temperature 	
Test environment	Thermal chamber	


The test results reflect the test environment within the temperature chamber used. This particular chamber has an airflow of about 0.5 meters per second (~100 linear feet per minute). Thermal performance can be greatly enhanced by increasing the overall airflow beyond 0.5 meters per second.

The system power dissipation is primarily dependent on the application program; that is, its use of computing or I/O resources. The stress levels used in this testing are considered to be at the top of the range of a typical user's needs.

TEST RESULTS

At 95% CPU utilization, this dual core unit operates within the CPU's core temperature safe operating range up to +80 °C using only a heat sink. At +85°, the processor begins dynamically adjusting the frequency between 1335 and 534 MHz. Full throttling took place at +90 °C.

Figure 25. EPM-39EBK CPU Frequency Relative to Ambient Temperature

*** End of document ***